Model Gallery

1140 models from 1 repositories

Filter by type:

Filter by tags:

aurore-reveil_koto-small-7b-it
Koto-Small-7B-IT is an instruct-tuned version of Koto-Small-7B-PT, which was trained on MiMo-7B-Base for almost a billion tokens of creative-writing data. This model is meant for roleplaying and instruct usecases.

Repository: localaiLicense: mit

opengvlab_internvl3_5-30b-a3b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-30b-a3b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-14b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-14b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-8b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-8b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-4b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-4b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-2b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

lfm2-vl-450m
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

lfm2-vl-1.6b
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

lfm2-1.2b
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

kokoro
Kokoro is an open-weight TTS model with 82 million parametrs. Despite its lightweight architecture, it delivers comparable quality to larger models while being significantly faster and more cost-efficient. With Apache-licensed weights, Kokoro can be deployed anywhere from production environments to personal projects.

Repository: localaiLicense: apache-2.0

kitten-tts
Kitten TTS is an open-source realistic text-to-speech model with just 15 million parameters, designed for lightweight deployment and high-quality voice synthesis.

Repository: localaiLicense: apache-2.0

qwen-image
We are thrilled to release Qwen-Image, an image generation foundation model in the Qwen series that achieves significant advances in complex text rendering and precise image editing. Experiments show strong general capabilities in both image generation and editing, with exceptional performance in text rendering, especially for Chinese.

Repository: localaiLicense: apache-2.0

qwen-image-edit
Qwen-Image-Edit is a model for image editing, which is based on Qwen-Image.

Repository: localaiLicense: apache-2.0

gpt-oss-20b
Welcome to the gpt-oss series, OpenAI’s open-weight models designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: gpt-oss-120b — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) gpt-oss-20b — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our harmony response format and should only be used with the harmony format as it will not work correctly otherwise. This model card is dedicated to the smaller gpt-oss-20b model. Check out gpt-oss-120b for the larger model. Highlights Permissive Apache 2.0 license: Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. Configurable reasoning effort: Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. Full chain-of-thought: Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. Fine-tunable: Fully customize models to your specific use case through parameter fine-tuning. Agentic capabilities: Use the models’ native capabilities for function calling, web browsing, Python code execution, and Structured Outputs. Native MXFP4 quantization: The models are trained with native MXFP4 precision for the MoE layer, making gpt-oss-120b run on a single H100 GPU and the gpt-oss-20b model run within 16GB of memory.

Repository: localaiLicense: apache-2.0

gpt-oss-120b
Welcome to the gpt-oss series, OpenAI’s open-weight models designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: gpt-oss-120b — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) gpt-oss-20b — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our harmony response format and should only be used with the harmony format as it will not work correctly otherwise. This model card is dedicated to the smaller gpt-oss-20b model. Check out gpt-oss-120b for the larger model. Highlights Permissive Apache 2.0 license: Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. Configurable reasoning effort: Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. Full chain-of-thought: Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. Fine-tunable: Fully customize models to your specific use case through parameter fine-tuning. Agentic capabilities: Use the models’ native capabilities for function calling, web browsing, Python code execution, and Structured Outputs. Native MXFP4 quantization: The models are trained with native MXFP4 precision for the MoE layer, making gpt-oss-120b run on a single H100 GPU and the gpt-oss-20b model run within 16GB of memory.

Repository: localaiLicense: apache-2.0

openai_gpt-oss-20b-neo
These are NEO Imatrix GGUFs, NEO dataset by DavidAU. NEO dataset improves overall performance, and is for all use cases. Example output below (creative), using settings below. Model also passed "hard" coding test too (6 experts); no issues (IQ4_NL). (Forcing the model to create code with no dependencies and limits of coding short cuts, with multiple loops, and in real time with no blocking in a language that does not support it normally.) Due to quanting issues with this model (which result in oddball quant sizes / mixtures), only TESTED quants will be uploaded (at the moment).

Repository: localaiLicense: apache-2.0

huihui-ai_huihui-gpt-oss-20b-bf16-abliterated
This is an uncensored version of unsloth/gpt-oss-20b-BF16 created with abliteration (see remove-refusals-with-transformers to know more about it).

Repository: localaiLicense: apache-2.0

Page 1