Model Gallery

983 models from 1 repositories

Filter by type:

Filter by tags:

aurore-reveil_koto-small-7b-it
Koto-Small-7B-IT is an instruct-tuned version of Koto-Small-7B-PT, which was trained on MiMo-7B-Base for almost a billion tokens of creative-writing data. This model is meant for roleplaying and instruct usecases.

Repository: localaiLicense: mit

opengvlab_internvl3_5-30b-a3b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-30b-a3b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-14b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-14b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-8b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-8b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-4b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-4b-q8_0
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

opengvlab_internvl3_5-2b
We introduce InternVL3.5, a new family of open-source multimodal models that significantly advances versatility, reasoning capability, and inference efficiency along the InternVL series. A key innovation is the Cascade Reinforcement Learning (Cascade RL) framework, which enhances reasoning through a two-stage process: offline RL for stable convergence and online RL for refined alignment. This coarse-to-fine training strategy leads to substantial improvements on downstream reasoning tasks, e.g., MMMU and MathVista. To optimize efficiency, we propose a Visual Resolution Router (ViR) that dynamically adjusts the resolution of visual tokens without compromising performance. Coupled with ViR, our Decoupled Vision-Language Deployment (DvD) strategy separates the vision encoder and language model across different GPUs, effectively balancing computational load. These contributions collectively enable InternVL3.5 to achieve up to a +16.0% gain in overall reasoning performance and a 4.05 ×\times× inference speedup compared to its predecessor, i.e., InternVL3. In addition, InternVL3.5 supports novel capabilities such as GUI interaction and embodied agency. Notably, our largest model, i.e., InternVL3.5-241B-A28B, attains state-of-the-art results among open-source MLLMs across general multimodal, reasoning, text, and agentic tasks—narrowing the performance gap with leading commercial models like GPT-5. All models and code are publicly released.

Repository: localaiLicense: apache-2.0

lfm2-vl-450m
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

lfm2-vl-1.6b
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

lfm2-1.2b
LFM2‑VL is Liquid AI's first series of multimodal models, designed to process text and images with variable resolutions. Built on the LFM2 backbone, it is optimized for low-latency and edge AI applications. We're releasing the weights of two post-trained checkpoints with 450M (for highly constrained devices) and 1.6B (more capable yet still lightweight) parameters. 2× faster inference speed on GPUs compared to existing VLMs while maintaining competitive accuracy Flexible architecture with user-tunable speed-quality tradeoffs at inference time Native resolution processing up to 512×512 with intelligent patch-based handling for larger images, avoiding upscaling and distortion

Repository: localaiLicense: lfm1.0

gpt-oss-20b
Welcome to the gpt-oss series, OpenAI’s open-weight models designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: gpt-oss-120b — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) gpt-oss-20b — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our harmony response format and should only be used with the harmony format as it will not work correctly otherwise. This model card is dedicated to the smaller gpt-oss-20b model. Check out gpt-oss-120b for the larger model. Highlights Permissive Apache 2.0 license: Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. Configurable reasoning effort: Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. Full chain-of-thought: Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. Fine-tunable: Fully customize models to your specific use case through parameter fine-tuning. Agentic capabilities: Use the models’ native capabilities for function calling, web browsing, Python code execution, and Structured Outputs. Native MXFP4 quantization: The models are trained with native MXFP4 precision for the MoE layer, making gpt-oss-120b run on a single H100 GPU and the gpt-oss-20b model run within 16GB of memory.

Repository: localaiLicense: apache-2.0

gpt-oss-120b
Welcome to the gpt-oss series, OpenAI’s open-weight models designed for powerful reasoning, agentic tasks, and versatile developer use cases. We’re releasing two flavors of the open models: gpt-oss-120b — for production, general purpose, high reasoning use cases that fits into a single H100 GPU (117B parameters with 5.1B active parameters) gpt-oss-20b — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters) Both models were trained on our harmony response format and should only be used with the harmony format as it will not work correctly otherwise. This model card is dedicated to the smaller gpt-oss-20b model. Check out gpt-oss-120b for the larger model. Highlights Permissive Apache 2.0 license: Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment. Configurable reasoning effort: Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs. Full chain-of-thought: Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users. Fine-tunable: Fully customize models to your specific use case through parameter fine-tuning. Agentic capabilities: Use the models’ native capabilities for function calling, web browsing, Python code execution, and Structured Outputs. Native MXFP4 quantization: The models are trained with native MXFP4 precision for the MoE layer, making gpt-oss-120b run on a single H100 GPU and the gpt-oss-20b model run within 16GB of memory.

Repository: localaiLicense: apache-2.0

openai_gpt-oss-20b-neo
These are NEO Imatrix GGUFs, NEO dataset by DavidAU. NEO dataset improves overall performance, and is for all use cases. Example output below (creative), using settings below. Model also passed "hard" coding test too (6 experts); no issues (IQ4_NL). (Forcing the model to create code with no dependencies and limits of coding short cuts, with multiple loops, and in real time with no blocking in a language that does not support it normally.) Due to quanting issues with this model (which result in oddball quant sizes / mixtures), only TESTED quants will be uploaded (at the moment).

Repository: localaiLicense: apache-2.0

huihui-ai_huihui-gpt-oss-20b-bf16-abliterated
This is an uncensored version of unsloth/gpt-oss-20b-BF16 created with abliteration (see remove-refusals-with-transformers to know more about it).

Repository: localaiLicense: apache-2.0

openai-gpt-oss-20b-abliterated-uncensored-neo-imatrix
These are NEO Imatrix GGUFs, NEO dataset by DavidAU. NEO dataset improves overall performance, and is for all use cases. This model uses Huihui-gpt-oss-20b-BF16-abliterated as a base which DE-CENSORS the model and removes refusals. Example output below (creative; IQ4_NL), using settings below. This model can be a little rough around the edges (due to abliteration) ; make sure you see the settings below for best operation. It can also be creative, off the shelf crazy and rational too. Enjoy!

Repository: localaiLicense: apache-2.0

arcee-ai_afm-4.5b
AFM-4.5B is a 4.5 billion parameter instruction-tuned model developed by Arcee.ai, designed for enterprise-grade performance across diverse deployment environments from cloud to edge. The base model was trained on a dataset of 8 trillion tokens, comprising 6.5 trillion tokens of general pretraining data followed by 1.5 trillion tokens of midtraining data with enhanced focus on mathematical reasoning and code generation. Following pretraining, the model underwent supervised fine-tuning on high-quality instruction datasets. The instruction-tuned model was further refined through reinforcement learning on verifiable rewards as well as for human preference. We use a modified version of TorchTitan for pretraining, Axolotl for supervised fine-tuning, and a modified version of Verifiers for reinforcement learning. The development of AFM-4.5B prioritized data quality as a fundamental requirement for achieving robust model performance. We collaborated with DatologyAI, a company specializing in large-scale data curation. DatologyAI's curation pipeline integrates a suite of proprietary algorithms—model-based quality filtering, embedding-based curation, target distribution-matching, source mixing, and synthetic data. Their expertise enabled the creation of a curated dataset tailored to support strong real-world performance. The model architecture follows a standard transformer decoder-only design based on Vaswani et al., incorporating several key modifications for enhanced performance and efficiency. Notable architectural features include grouped query attention for improved inference efficiency and ReLU^2 activation functions instead of SwiGLU to enable sparsification while maintaining or exceeding performance benchmarks. The model available in this repo is the instruct model following supervised fine-tuning and reinforcement learning.

Repository: localaiLicense: aml

dream-org_dream-v0-instruct-7b
This is the instruct model of Dream 7B, which is an open diffusion large language model with top-tier performance.

Repository: localaiLicense: apache-2.0

huggingfacetb_smollm3-3b
SmolLM3 is a 3B parameter language model designed to push the boundaries of small models. It supports 6 languages, advanced reasoning and long context. SmolLM3 is a fully open model that offers strong performance at the 3B–4B scale. The model is a decoder-only transformer using GQA and NoPE (with 3:1 ratio), it was pretrained on 11.2T tokens with a staged curriculum of web, code, math and reasoning data. Post-training included midtraining on 140B reasoning tokens followed by supervised fine-tuning and alignment via Anchored Preference Optimization (APO).

Repository: localaiLicense: apache-2.0

Page 1